EFFECT OF PROTEIN ENRICHMENT ON PROXIMATE COMPOSITION, FUNCTIONAL AND PASTING CHARACTERISTICS OF CASSAVA “LAFUN”

Uche Capulet Anyaiwe, Matthew Olusola Oluwamukomi* and Tayo Nathaniel Fagbemi

Department of Food Science & Technology, Federal University of Technology, Akure, Nigeria
Corresponding author* e-mail: mukomi2003@yahoo.com

Abstract
This study was aimed at investigating the best way of enriching “lafun”, a fermented cassava meal with soy-curd and soy-residue and also to determine their proximate, functional and pasting characteristics. “Lafun” wet meal was enriched with soy protein supplements (curd and residue) before drying. A sample without supplement was used as internal control and a commercial sample as an external control. They were subjected to proximate, functional and pasting properties evaluations. The proximate composition ranged from 4.00 – 5.43%, 1.76 – 19.8%, 1.57 – 2.58%, 0.92 – 8.41%, 2.01 – 3.65%, 56.94 – 88.24% for moisture, protein, crude fibre, fat, ash and carbohydrate respectively while the energy values ranged from 343 – 407 MJ/g. There were significant (p ≤ 0.05) differences in the functional and the pasting properties of both enriched and control samples. A peak viscosity of 359.25 RVU was observed in the control sample while the least peak viscosity of 199.83 RVU was recorded for commercial sample. The peak time increased from 4.07 min for “lafun” enriched with residue to 4.93 min for “lafun” enriched with curd while the pasting temperature and time ranged from 74.35 to 77.05°C and 4.07 to 4.89 min. respectively. The study has shown that enriching lafun with soy curd and residue improved its nutritional qualities but with a reduced peak viscosity. This will go a long way in reducing wastages normally associated with this crop in Nigeria during soymilk production.

Keywords: Lafun, enrichment, soy-curd, soy-residue, proximate, functional, pasting properties.

Received: 13.12.2017 Reviewed: 20.03.2018 Accepted: 28.03.2018

1. INTRODUCTION

Cassava (Manihot esculenta, Crantz) is a good famine relief crop that is eaten by all classes of people. The crop has become widespread and assumed its current importance as a food during the 20th Century. In Africa, cassava is one of the most important food crop (FAO, 1999) and Nigeria is the current leading cassava producing country in the world (Oyewole, 1991). Cassava is well known not only for its high carbohydrate content but also for the poor quality and concentration (<1%) of its protein (Sanni and Sobamiwa, 1994). “Lafun” is one of the local names given to flour made from cassava in Nigeria, popularly consumed in the South west (Oyewole and Afolami, 2001). It is produced through the submerged soaking of cassava roots in water for about 2-3 days in order for fermentation process to take place, the product will be sun dry before milling dried fermented roots to flour. The fermented cassava flour could then be mixed with boiled water to form dough and consumed with soup (Oyewole and Afolami, 2001). The major limitation in “lafun” like other cassava product includes low protein content, low minerals, vitamins and the presence of cyanide toxicity. However, the detoxification and fortification of inexpensive staples such as cassava and maize has resulted in products of high nutritional value (Onilude et al., 2004). Soybean is cheap and readily available throughout the year (Onyekwelu and Fayose, 2007). It has a high protein content (32.4% - 50.2%) which has been recorded and nutritive quality (Fasasi et al., 2004). It has been described along with other legumes as the most important source of food proteins for human beings. Efforts have been made to address the protein deficiencies in cassava products including “lafun” through enrichment
with soybeans and the production of acceptable nutritionally enriched food that can be stored at home. According to Rockland and Nishi (1979), soybean is under-utilized for human consumption; this has been attributed to factors such as prolonged cooking time, deficiency in methionine and presence of several heat-stable and heat labile factors that interfere with digestion such as gastrointestinal distress and flatulence associated with it. It is a useful source of both water and fat soluble vitamins including thiamine, nicotinic acid and pantothenic acid. Soybean curd also known as Tofu in Asia, is a food cultivated by coagulating soy milk and then pressing the resulting curds into soft white cheese like blocks. Tofu has a low calorie count and relatively large amounts of protein (about 10.7%). It is high in iron, and depending on the coagulants used in manufacturing it can have a high calcium or magnesium content (Jubayer, 2013). Soybean curd residue (SCR) on the other hand namely, “okara” in Japanese, is the residue remaining after the filtration of soymilk, often regarded as a waste. The dumping of SCR has become a problem due to its contamination to the environment (Shuhong et al., 2013). SCR is rich in fiber, fat, protein, vitamins, and trace elements. It has potential for value-added processing and utilization and increased economic benefit as well as decreased pollution potential for the environment. About 1.1 kg of fresh SCR is produced from every kilogram of soybeans processed into soymilk or tofu (Khare et al., 1995). It is a good dietary fiber, which cannot be digested in the small intestine but can be fermented by microbes in the large intestine and reported to reduce blood fat and blood pressure, prevent the occurrence of constipation and colon cancer. It also reported to have ability to regulate diabetics’ blood sugar levels (Periago et al., 1997). Therefore, this study is aimed at enriching “lafun” with soy curd and residue and studying the functionality of these enrichments and their effect on the pasting characteristics of the blends.

2. MATERIALS AND METHODS

2.1. MATERIALS

2.1.1. Sources of Raw Materials

Cassava roots (Manihot esculenta Crantz) were obtained from the Teaching and Research farm of the Federal University of Technology, Akure, Ondo State, Nigeria. Soybean (Glycine max (TGX) was purchased from Michael Okpara University of Agriculture (UMUDIKE), Oturu, Abia State, Nigeria.

2.2. METHODS

2.2.1. Soy Curd and Residue Extraction

Soy bean seeds (150 g) were sorted, cleaned, soaked (12 h) in 2 L of tap water containing 0.5 g NaHCO₃ in a cooking pot and boiled for 25 minutes. The boiled and dehulled soybean seeds were then wet milled in a hammer mill. Water was added in ratio 1:8 and a muslin cloth was used to extract the milk (pH 6.40) after which the pH was adjusted to 4.6 by adding 1 M citric acid. The soy milk was allowed to stand and the clear whey at the upper part was decanted while the lower part (curd) was collected after six hours. The residue was obtained after soy milk has been extracted from soy bean mash and filtered. The samples of curd and residue were oven dried (at 60 °C for 24 h), milled, and packaged in high density polythene HDPE and stored in the refrigerator for further use. Figure 1 showed the production of the curd and residue.

2.2.2. Lafun Production and Enrichment

Freshly harvested cassava roots were peeled with knife, washed and was cut into chunks, fermented for 4 days (pH 3.67), washed, sifted, milled into pulp and divided into two portions as shown in Figure 2. One portion was used as control while the other portion was enriched with dry soy curd and residue supplement respectively using Pearson’s square with 10% enrichment level and also taking into consideration the water content of the mash. Another commercial (commercial sample) “lafun” was obtained from Federal Institute for Industrial Research (FIIRO) Oshodi, Lagos, Nigeria.
2.3. CHEMICAL ANALYSES
2.3.1. Proximate Analyses
Moisture content, protein, fat, fibre and ash contents were determined using the AOAC (2012) methods.

\[
\text{% carbohydrate content} = 100 - (\text{%protein} + \text{%moisture content} + \text{%fat} + \text{%ash} + \text{%crude fibre}).
\]

2.3.2. Gross Energy Value
Calorific values were obtained by multiplying the values of the crude protein, fat, and carbohydrate contents (except crude fibre) by their physiological fuel values of 4, 9, and 4 kcal/100g respectively taking the sum of the products (Osborne and Voogt, 1978). All the results were expressed on percentage dry weight basis.

2.3.3. Functional Properties
Bulk density: Bulk density determinations were carried out for Loosed Bulk Density and Packed bulk density according to the methods of Pearson (1973).

Swelling capacity: About 25g of the ‘lafun’ samples was measured into a 210ml measuring cylinder noting its original volume. 150ml of cold water was added and allowed to stand for 4 hours before observing the final volume of swelling (Ukpabi and Ndimele, 1990).

\[
\text{Swelling index} = \frac{\text{final volume}}{\text{original volume}}
\]

Reconstitution index: About 100ml of boiling water was mixed with 10g of the ‘lafun’ sample for 90seconds. It was poured into a 250ml graduating cylinder. Volume of sediment recorded after 10 minutes served as the index of reconstitution. (Banigo and Akpapunam, 1997).

Wettability: About 1g of the ‘lafun’ sample was allowed to drop freely from 15mm level above 200ml water in a measuring cylinder and the time it will take for the ‘lafun’ particles to sink totally was noted. The time was recorded as the wettability power of the ‘lafun’ sample (Armstrong et al., 1979).

Water Absorption Capacity and (WAC): Water absorption capacity was determined using the procedure of Sathe et al. (1982).

Oil absorption Capacity (OAC): One gram of sample was weighed, 10ml of vegetable oil of a known density (0.99/ml) were added to the sample and the mixture was stirred on a magnetic stirrer at 1000 rpm for 5minutes. The mixture was centrifuge at 3500 rpm for 30minutes and the supernatant was removed and measured with 10ml measuring cylinder (Sathe et al., 1982).

\[
\text{OAC} = \frac{\text{volume of oil absorbed} \times \text{density of oil} \times 100}{\text{weight of sample used}}
\]

2.3.4. Pasting properties: The pasting properties were determined using a rapid viscosity analyzer (model 3D New Port Scientific PTY. Ltd, Australia) The STD 2 profile (AACC, 2000) method was used to determine the pasting properties of the samples. 3 grams of ‘lafun’ was mixed with 25 ml distilled water. The slurry heated from 50 to 95°C at a rate of 1.5°C/min., held for 15min., cooled to 50°C at 1.5°C/min. and finally held at 50°C for 15min. The process was a programmed heating and cooling cycle under constant shear. Pasting parameters determined were pasting temperature, peak viscosity, holding strength, breakdown viscosity, set back from holding strength and peak time.

2.4 Statistical Analysis
Some data were subjected to two-ways analysis of variance (ANOVA). Means were separated using Duncan’s New Multiple Range Test at (P ≤ 0.05). This was analyzed using Statistical Package for Social Scientists (SPSS) version 17.
3. RESULTS AND DISCUSSION

3.1. Proximate Composition
The chemical composition of the commercial, control and enriched ‘lafun’ is shown on Table 1. The proximate composition ranged from 4.00 – 5.43 %, 1.76 – 19.89 %, 1.57 - 2.58 %, 0.92 - 8.41 %, 2.01 – 3.65 %, 56.94 – 88.24 % for moisture, protein, crude fibre, fat, ash and carbohydrate respectively while the energy valued ranged from 343 – 407 MJ/g. There was a significant difference (p<0.05) in all the samples. The values for the moisture content of lafun samples ranged from 4.45% to 5.43% with enriched samples having the lowest values (4.00%). The moisture content reduced with the enrichment (Table 1). Sanni et al. (2006) reported that lowering the moisture content of a product leads to a better shelf stability of such product. Generally, all the “lafun” samples had low moisture contents which are within the range of values (5.23% - 6.12%) reported for cassava flour (Kuye and Sanni, 2002) and sweet-potato by Sanni et al., (2007). They were also lower when compared with the values of cassava flour (9.2% - 12.3% and 11% - 16.5%) reported by Charles et al. (2005) and Shittu et al., (2007) respectively. Soybean flour has been reported to have a high water absorption capacity (Samuel et al., 2006), which could explain the significant reduction in moisture content.
Lasekan and Akintola (2002). Enrichment using soybean reduced the available water and thus would likely extend the shelf life of the enriched meal by reducing its susceptibility to microbial spoilage. The fibre content of the enriched “lafun” samples ranged from 1.57 to 2.28% with sample LER having the highest value while the commercial sample had the least fibre content (1.57%) as shown in Table 1. The values obtained are in the range of values reported by Folake et al. (2012) for soy-enriched with tapioca. From the results, significant differences (p < 0.05) existed among the fibre contents of all the “lafun” samples.

These values were higher than 1.10% (Buitrago, 1990) and 1.4% (Bradbury and Holloway, 1988) for cassava root, but lower than sweet cassava (10.31%), but comparable with bitter cassava (3.09%) (Okigbo, 1980). This range falls below the value (6.13%) reported for control gari by Oluwamukomi and Adeyemi (2013). The major increase in the fibre content of sample LER and slight increase in sample LEC, showed that enrichment increased the fibre content which corroborates with Folake et al. (2012) for tapioca enriched with soy. This agrees with the findings of Hwei-Ming et al. (1994) and Balagopalan (1996). The ash content of a food material could be used as an index of mineral constituents of the food (Sanni et al., 2008). Table 1 shows significant differences between the enriched samples (LER, LEC) and control samples (CL and CS). Enrichment with soy supplement resulted in higher ash contents hence, shows the presence of more mineral content in the enriched samples compared to the commercial and control samples. Enrichment increased the ash content from 2.01% in the control sample to 3.65% in the soy curd enriched samples. This shows a significant difference (p < 0.05) between the samples enriched with soy supplement and the control samples. This is similar to the findings of Edem et al., (2004) and Njoku et al. (2013) observed the increased in the ash content of “gari” from 5.17% to 5.58% by enriching with 10% and 15% soy meal respectively. The higher values of ash contents observed in the “lafun” enriched with soy supplement when compared with commercial and control samples is nutritionally advantageous to consumers. The fat contents (Table 1) showed 0.92% for commercial sample, 0.98% for control sample, 4.02% “lafun” enriched with soy residue and 8.41 % ‘lafun’ enriched with curd. “Lafun” samples enriched with soy curd had the highest fat contents followed by sample enriched with soy residue. Significant difference (p<0.05) existed between the enriched ‘lafun’ samples with the commercial sample (CS) and control sample (CL). This increase in the fat content in “lafun” enriched with soy supplements might have been as a result of the presence of the oil in the soy supplement. This agreed with the report of Uche and Aprioku, (2008) that enriched cassava with soybean. Enrichment significantly increased the protein content of the product, from 1.76% in the commercial sample (CS), 1.85% in the control sample (CL), to 14.37% for ‘lafun’ enriched with soy residue and finally to 19.89% in ‘lafun’ enriched with soy curd supplement. This means that the sample enriched with soy curd supplement had the highest mean protein followed by the sample enriched with soy residue supplement while those without supplement had the lesser values. The highest value observed in ‘lafun’ sample enriched with soy curd might have been due to the protein composition of the soy curd thus increasing the values of the protein contents (Iwe and Onu, 1992; Uche and Aprioku, 2008). This agrees with Goyal et al. (2012) that soybean contains approximately 40-45% protein. The carbohydrate content were 88.16% for commercial sample (db), 88.24 % for control sample, 70.93 % for sample enriched with soy residue and 56.94% (db) sample enriched with soy curd. Similar decrease in carbohydrate with increase in protein content was reported in “Ugali”, a Kenyan soy-enriched maize meal (Nyotu et al., 1996), soy-enriched rice (Iwe, 2002), soy-sweet potato meal mixtures and...
soy-sweet potato meal cookie (Ingram, 1975). It has previously been noted that the total carbohydrate decreased with increase in protein enrichment (Lasekan and Akintola, 2002; Lasekan et al., 2004; Samuel et al., 2006). This could be a desirable attribute for weight watchers and diabetic patients who require less carbohydrate and high protein intake.

The energy values increased significantly (P < 0.05) from 343.06 MJ/g for CS to 407.17 MJ/g for LEC. The increase in the values of energy obtained in the ‘lafun’ sample enriched with soy curd 407 MJ/g might have been due to its fat content since oil has twice the energy for the same quantities for both protein and carbohydrate. The enriched samples would therefore yield more energy per gram of the sample consumed.

3.2. Functional Properties

The essence of determining the functional properties of the ‘lafun’ flour was for identification of the usage of the flour for food application or product development (Adebowale et al., 2012). Functional properties of the mean value of ‘lafun’ samples in (Table 2) showed the difference between enriched, commercial and control samples. The loose bulk density from (Table 2) have their values as CL 0.33, CS 0.35 to LEC 0.39 and LER 0.67, while that of packed bulk density were given as CL 0.66, CS 0.64 to LEC 0.81 and LER 0.77 respectively. The bulk density values of the enriched samples were higher when compared with the ‘lafun’ flour without enrichment. The higher values observed in the enriched ‘lafun’ samples signified that they were heavier and with larger particle size. The bulk density is generally affected by the particle size and the density of flour or flour blends and it is very important in determining the packaging requirement, raw material handling and application in the food industry (Adebowale et al., 2008a; Ajanaku et al., 2012). The water absorption capacity is a term which describes the ability of the flour to absorb or take in water during processing. The enriched ‘lafun’ samples have the higher water absorption capacity value (LER 3.50 - LEC 3.69) with slight difference between the enriched samples and the control samples (CS 2.50 - CL 2.59).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture (%)</th>
<th>Protein (%)</th>
<th>Crude Fibre (%)</th>
<th>Crude Fat (%)</th>
<th>Total Ash (%)</th>
<th>Carbohydrate (%)</th>
<th>Energy (MJ/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>5.25±0.02b</td>
<td>1.85±0.01c</td>
<td>1.71±0.13c</td>
<td>0.98±0.01ad</td>
<td>2.01±0.01cd</td>
<td>88.19±0.78a</td>
<td>354.76±1.54c</td>
</tr>
<tr>
<td>CS</td>
<td>5.43±0.00a</td>
<td>1.76±0.00d</td>
<td>1.57±0.00b</td>
<td>0.92±0.03e</td>
<td>2.08±0.00e</td>
<td>88.24±0.11a</td>
<td>343.06±1.19c</td>
</tr>
<tr>
<td>LEC</td>
<td>4.00±0.00a</td>
<td>19.89±0.82a</td>
<td>1.96±0.00b</td>
<td>8.41±0.30a</td>
<td>3.36±0.00b</td>
<td>56.94±0.18b</td>
<td>407.36±1.84a</td>
</tr>
<tr>
<td>LER</td>
<td>4.45±0.01d</td>
<td>14.37±0.00b</td>
<td>2.58±0.16a</td>
<td>4.02±0.10b</td>
<td>3.65±0.00a</td>
<td>70.93±1.75b</td>
<td>372.05±0.54b</td>
</tr>
</tbody>
</table>

Values are means ± standard deviation with different superscripts are significantly different (P≤0.05).

KEY: CL = Control sample, CS= commercial sample LEC, = ‘lafun’ enriched with 10% curd, LER= ‘lafun’ enriched with 10% residue.

These high values of water absorption capacity can be attributed to lose structure of starch polymers while low value indicates the compactness of the structure (Adebawale et al., 2005; Oladipo and Nwokocha, 2011). The ability of flour materials to absorb water is sometimes attributed to their protein content thus the observed water absorption capacity of the samples could therefore be attributed to their protein content as provided by the soy bean flour. The water absorption capacity of sample enriched with curd (3.69) was comparatively higher than the sample enriched with soy residue (3.50) which agreed with (Padilla et al., 1996), African yam bean flour (118-179%) (Oshodi et al., 1997) and lima bean flours (130 - 140%) (Adeyeye and Aye, 2005). This high value of water absorption capacity of the flour is an indication that it would be useful as a functional ingredient (Olaofe et al., 1998). Swelling takes place when the starch is heated; the intra-molecular
hydrogen bonds are broken and water is absorbed leading to swelling. Swelling capacity provides information on the nature of the associative forces within starch granules (Ogunmola et al., 2001). When starch is pasted in excess water system, the granules imbibe water through the amorphous regions in a reversible manner, and the amount of water imbibed increases with temperature until a critical temperature is reached (gelatinization temperature) at which the starch swells irreversibly with loss of crystalline order.

Table 2 shows the effect of starch modification through protein enrichment of ‘lafun’ on the swelling properties of the product (Perez et al., 1998). A significant decrease in swelling index of ‘lafun’ sample ranged from 0.44 in LEC to 0.59 in CL. This agrees with the findings of Oluwamukomi et al. (2005), and Oluwamukomi et al. (2007). This may be attributed to the reduced starch component in the enriched samples which could have reduced the absorption of water. Several studies have shown that swelling capacity is well correlated to amylose and its properties; flour with high amylose content tends to have high swelling capacity (Nuwamanya et al., 2011). In a related study by Prinyawiwatkul et al. (1994) the reduced swelling capacity was attributed to high fat content which might have reduced the ability of the mixture of wheat and peanut flours to bind water. Cheftel et al. (1985) also attributed this phenomenon to the presence of lipids in the soy-melon supplement which must have reduced the swelling capacity of the gari granules.

The wettability was measured by the time taken in seconds by the ‘lafun’ samples to sink in water when dropped at a distance of 13 cm from the surface of the water (Adebowale et al., 2008). The enriched samples took longer period to sink in water. This might have been due to the effect of the soy supplement which must have changed the physical and chemical compositions of the ‘lafun’ and made it less susceptible to imbibe water. Hence the wettability was impaired and reduced drastically (Oluwamukomi et al., 2007). This result is in agreement with the previous findings of 27 - 35 seconds reported for D. alata yam flour and 42.5 seconds reported for D. rotundata yam (Udensi and Okaka, 2000).

Oil absorption capacity of ‘lafun’ values varied from 0.91 for LEC to 1.39 for CS. The highest oil absorption capacity for ‘lafun’ samples was observed in the commercial sample (CS1.29) and did not differ significantly with the control sample (CL 1.26) due to their similar composition. The lowest oil absorption capacity was observed in sample enriched with soy curd (0.91 LEC). These results showed that the oil absorption capacity of ‘lafun’ samples was affected by soybean enrichment. The oil absorption capacity is influenced by the lipophilic nature of the granular surface and interior which affect the functional properties of starches (Babu and Parimalavalli, 2012). High oil absorption capacity of flour suggests that they may be useful in food preparation that involves oil mixing such as in bakery products where oil is an important ingredient (Fagbemi and Olaofe, 2000). The reconstitution index was reduced with enrichment ranging from 3.02 for LER to 4.30 for CL. These lower values of reconstitution index with the enriched samples must have been due to the higher concentration of oil in the soy curd supplement. This behavior is similar to that of swelling index which was also found to decrease with soy flour enrichment. It has been shown that the presence of lipids acted as a buffer thus lowering the swelling power of starch granules (Oluwamukomi and Adeyemi, 2013).

3.3. Pasting Properties of ‘Lafun’ Samples

Pasting temperature of the ‘lafun’ samples ranged from 74.25 ºC for LEC to 77.05 ºC for CS. (Table 3), which is in agreement with values reported for dried fufu (76 - 78 ºC) by Sanni and Jaji (2003), (63.07 - 63.60 ºC) by Adebowale et al. (2008) for toasted tapioca. The pasting temperature is a measure of the minimum temperature required to cook a given food sample (Sandhu et al., 2005), it can have implications for the stability of other...
components in a formula and also indicate energy costs (Newport Scientific, 1998). The pasting temperature of the ‘lafun’ was generally lower than the boiling temperature hence; the ‘lafun’ could form a paste in hot water below boiling point (Adebawale et al., 2008; Oluwamukomi and Jolayemi, 2012). The peak time is a measure of the cooking time (Adebawale et al., 2005). The peak time is the period it took the ‘lafun’ samples to gel which increased from 4.07 min. for CL to 4.93 min. for LEC respectively. The time to attain peak viscosity is considerably lower than those reported for dried fufu (22 -38 min) by Sanni and Jaji (2003), pupuru (37 - 43 min) by Shittu et al., (2001), but in the same range with toasted tapioca (3.62 - 4.27 min) reported by Adebawale et al. (2008). In Table 3, it could be observed that the control sample CL has the highest peak viscosity of 359.25 RVU while LER has the lowest value of 99.83 RVU. This agreed with the study of (Maziya-Dixon et al., 2004) who reported a significant decrease in the pasting viscosity of mung. Peak viscosity is often correlated with the final product quality. It also provides an indication of the viscous load likely to be encountered during mixing (Maziya-Dixon et al., 2004; Maziya-Dixon et al., 2005). Two factors interact to determine the peak viscosity of a cooked starch paste: the extent of granule swelling (swelling capacity) and solubility. Higher swelling index is indicative of higher peak viscosity while higher solubility as a result of starch degradation or dextrinization results in reduced paste viscosity (Shittu et al., 2001; Zobel, 1988). There was a decrease in peak viscosity with an increase in pasting temperature unlike the findings of Oluwamukomi and Jolayemi. (2012). The enriched samples, commercial and control samples formed pastes almost at the same temperature range of 74.25 - 77.05°C and also took almost the same range of time of 4.13 - 4.93 min. to gel apart from the control sample (CL 4.07 min.) that spent lesser time than other samples. However, due to insignificant difference (p < 0.05) in the pasting temperature and relatively short pasting time of all the samples, their ease of cooking would depend on their granule swelling (Zobel, 1988). Peak viscosity which is the maximum viscosity developed during or soon after the heating portion of the pasting test (Newport Scientific, 1998), and was significantly lower in the enriched samples (LER 199 - LEC 203.08 RVU) than the control CL 359.25 and commercial sample CS 305.33. The ability of a mixture to withstand heating and shear stress that is usually encountered during processing is an important factor for many processes especially those requiring stable paste and low retrogradation/syneresis. It is an indication of breakdown or stability of the starch gel during cooking (Zaidhul et al., 2006). The lower the value the more stable is the starch gel. The breakdown is regarded as a measure of the degree of disintegration of granules or paste stability (Dengate, 1984; Newport Scientific, 1998). At breakdown, the swollen granules disrupt further and amylase molecules will generally leach out into the solution (Whistler and BeMiller, 1997).

Table 3: Pasting properties of ‘lafun’ samples
Values are means ± standard deviation with different superscripts are significantly different (P≤0.05).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak (1)</th>
<th>Trough (1)</th>
<th>Breakdown</th>
<th>Final viscosity</th>
<th>Set back</th>
<th>Peak time</th>
<th>Pasting temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>359.25</td>
<td>117.42</td>
<td>241.83</td>
<td>186.42</td>
<td>69.00</td>
<td>4.07</td>
<td>75.20</td>
</tr>
<tr>
<td>CS</td>
<td>308.33</td>
<td>129.08</td>
<td>179.25</td>
<td>172.92</td>
<td>43.83</td>
<td>4.13</td>
<td>7.05</td>
</tr>
<tr>
<td>LEC</td>
<td>203.08</td>
<td>93.00</td>
<td>110.08</td>
<td>133.00</td>
<td>40.00</td>
<td>4.93</td>
<td>74.25</td>
</tr>
<tr>
<td>LER</td>
<td>199.83</td>
<td>95.75</td>
<td>104.08</td>
<td>135.58</td>
<td>39.83</td>
<td>4.89</td>
<td>74.35</td>
</tr>
</tbody>
</table>
Higher values of breakdown are associated with higher peak viscosities which in turn are related to the degree of swelling of starch granules during heating (Ragaee and Abdel-Aal, 2006). More starch granules with a high swelling capacity resulted in a higher peak viscosity.

4. CONCLUSION

It can be concluded from the study that soy curd and residue inclusion to the ‘lafun’ improved the protein, crude fibre, fat content and ash contents while there was also an increase in the energy value. Invariably, the water absorption capacity, packed/loose bulk density, and wettability increased with the increase in the level of enrichment process with a significant decrease in swelling capacity, oil absorption capacity and reconstitution index. High pasting values were also recorded for the control ‘lafun’ sample in relation to other samples. Lafun enriched with soy curd and residue could gain acceptability among customers of the product and also, help to enhance the utilization of soy beans, thereby reducing wastages normally associated with this crop in Nigeria.

5. REFERENCES

[9]. Shuhong Li, Dan Zhu, Kejuan Li, Yingnan Yang, Zhongfang Lei, and Zhenya Zhang (2013). Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Industrial Engineering, Volume 2013 Article ID 425950, 8 pages

