THE STUDY OF PHOTOSYSTEM II EFFICIENCY ON SELECTED SYNTHETIC PLANT SPECIES

Marinela Roxana Roșescu¹ and Marin Andrei²
¹National High School "Al. Obodescu" Mioveni, Romania
²Facultatea de Biologie, Universitatea București Faculty of Biology, University of Bucharest
20, Pescariilor Street, Mioveni, Arges, Romania; marinrocescu@yahoo.com
1-3, Alea Portocalilor Street, Bucharest, Romania; prof marinandrei@yahoo.com

Abstract
Chlorophyll fluorescence represents an indicator of the energy conversion in the photosynthesis process, offering information regarding the PS II efficiency. This determining method is rapid, precise, and inexpensive. The experiments have been realized with six synthetic plants species: Polygonum aviculare, Conyza canadensis, Erigeron annuus, Lactuca serriola, Cichorium intybus, Echinochloa crus-galli, dominant species on the wastelands around the cities of Pitesti, Mioveni and Maracineni. Chlorophyll fluorescence values were obtained in 2008, using an OS 30 (Opti-Sciences) chlorophyll fluorometer and in 2009 with FP 100 hand-held fluorometer, OJIP test (Photon Systems Instruments) by placing leaves in dark (15 minutes). The following indicators were determined: F₀, Fm, F/Fm, Fv. The PS II efficiency in the dark environment (F/Fm) registered higher values during the cited period in the cities of Pitesti and Mioveni at the species Polygonum aviculare and Cichorium intybus, which are better adapted to the urban climatic factors (light, temperature, water etc.) The F/Fm ratio had maximum values during the month of September 2008 for all the six researched species. The PS II efficiency recording the highest values in Maracineni, soil conditions (0,797). The PS II efficiency has been correlated with the main environmental factors affecting the photosynthesis process among which an important role was played by mean soil temperature (r partial = -0.077*) and rainfall deficit (r partial = -0.060*).

Keywords: Fv/Fm, PS II efficiency, OJIP test, ambient stress

1. INTRODUCTION
Chlorophyll fluorescence is an indicator of the energy conversion in the photosynthesis process and it can be determined using a relatively new technology [2,5] through which the results can be obtained in the field. Chlorophyll fluorescence is part of the physiological measurements category which quantifies the photosystem II (PS II) light absorption efficiency. Functioning of photosystem II (PSII) is the most sensitive indicator of environmental stress in plants [7]. Changes in PSII activity can be assayed rapidly and non-destructively by measurement of chlorophyll fluorescence.

2. MATERIALS AND METHOD
The experiments were executed on six synthetic plants species: Cichorium intybus L., Conyza canadensis (L.) Cronq., Erigeron annuus L. (Pers.), Lactuca serriola Torn., Polygonum aviculare L. and Echinochloa crus-galli (L.) Beauv, on three locations: Pitesti, Mioveni and Maracineni.

The fluorescence measurements were done during the months of July, August and September 2008 using an OS-30 (Opti-Sciences) fluorometer with the following settings: two seconds for the action time of the light spot and 2000 micromole/m²/s for the source intensity. The subject leaves of the experiment were dark adapted for a minimum of 15 minutes in order to determine the Fv/Fm ratio. With the help of the fluorometer the following leaf indicators were determined: F0 - minimum fluorescence, (while the collecting antennas were opened for the receiving of light quantum – the leaf being adapted to dark conditions); Fm - maximum fluorescence registered after exposure to the excitation source while the collecting antennas were saturated with light and closed; Fv/Fm- the fluorescence amplitude variation and maximum fluorescence ratio (maximum photochemical yield of PS II). This is an indicator of maximum efficiency of exciting energy transfer and is calculated with the following formula: Fv/Fm = (Fm-Fo)/Fm. F1 – in-time fluorescence, measured in field, at
the time of the experiment.
For this six species, in July and August 2009, the Chlorophyll Fluorescence Induction Kinetics (OJIP) and Non-photochemical Quenching (NPQ) tests were also conducted. The two tests were conducted using the the FluorPen FP 100. The OJIP test permitted to computing of the 25 indicators. All measurements and tests were conducted in the field; the temperature and humidity were recorded using a digital datalogger (Mannix DL8829).

The polifactorial experience variance analysis was the statistical method applied for processing the experimental data. The Duncan test (for the confidence level of α=0.05) was used for establishing the statistic significance and the partial correlation coefficients were used to establish the significance of the correlative dependence.

3. RESULTS AND DISCUSSIONS

The 1038 values of the sample represent the total number of experimental values of the indicators F₀, Fₘ, Fᵥ/Fₘ and Fᵢ. The average value of the simple for Fᵥ/Fₘ was 0.744, meaning that it was very close to the maximum value for Fᵥ/Fₘ (0.80-0.83) and it indicates an optimal parameter functioning of the reaction centers of PS II. Besides average for determining the central tendency was also calculated the median (the value of an ordered statistical series which divides the series into two parts) which has the value of 0.770 and the mode (the value with the highest frequency) which has the value of 0.796.

The variation of the maximum amplitude was 0.770 (the minimum was 0.225 and the maximum was 0.995). The standard deviation was 0.132 and the variation coefficient 17.8%. The skewness coefficient had a value of 1.263 which indicates a left asymmetry (with the dominating values higher than the average) and, at the same time, with a longer tail to the left (with more distant and smaller values). The kurtosis coefficient (the excess) had a value of 1.516, which means that the distribution is leptokurtic (excess of numbers near the average and far from it, with empty distribution flanks).

The average is representative for the sample only if homogeneity is accepted. The normality was tested using the Shapiro-Wilk test. The W indicator was 0.897, a value which led to the acceptance of normality.
The histogram associated reveals the frequency distribution of the Fᵥ/Fₘ values by class (0.2/8 = 0,025) (figura 1).

![Figure 1. Frequency distribution of the Fᵥ/Fₘ values by class](image)

Table nr. 1 shows the correlation between the chlorophyll fluorescence indicators. We observe the existence of a significantly negative correlation between Fᵥ/Fₘ and the other indicators (F₀, Fₘ and Fᵢ). In all cases the significance threshold is p< 0.01.

Table 1. The Correlation Matrix of the Chlorophyll fluorescence Indicators (Pearson Coefficient)

<table>
<thead>
<tr>
<th>Fluorescence indicators</th>
<th>F₀</th>
<th>Fₘ</th>
<th>Fᵥ/Fₘ</th>
<th>Fᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₀</td>
<td>1</td>
<td>-0.748(**)</td>
<td>-0.757(**)</td>
<td>-0.704(**)</td>
</tr>
<tr>
<td>Fₘ</td>
<td>-0.748(**)</td>
<td>1</td>
<td>-0.234(**)</td>
<td>0.948(**)</td>
</tr>
<tr>
<td>Fᵥ/Fₘ</td>
<td>-0.757(**)</td>
<td>-0.234(**)</td>
<td>1</td>
<td>-0.202(**)</td>
</tr>
<tr>
<td>Fᵢ</td>
<td>-0.704(**)</td>
<td>0.948(**)</td>
<td>-0.202(**)</td>
<td>1</td>
</tr>
</tbody>
</table>

The correlation is significant at P<0.01

The results graphically presented in the below charts show that the photo-system II efficiency is determined in the dark environment (Fᵥ/Fₘ) by the experimental factors. Analyzing figure 2 which shows the chlorophyll fluorescence variation Fᵥ/Fₘ by species on constant levels for the month during which the experiment was conducted, we notice the existence of three homogenous groups – the best results showing the *C. intybus* and *P. aviculare*, which were homogenous amongst themselves while the *E. crus-galli* presented a weaker activity at the PS
II level. During the month of July 2008 the Fv/Fm values recorded for C. canadensis were the highest together with those of C. intybus and P. aviculare. During the month of August 2008 no significant differences were recorded among the species which had a homogenous behavior; this translated into a significant departure from the average tendency (due to a strong interaction between the species influence on the fluorescence and the determination time). During the month of September 2008, although the species showed a rising value for the Fv/Fm for E. annuus and a drop in the values recorded for C. canadensis and P. aviculare, those values followed the general average tendency of the Fv/Fm factors.

Analyzing figure 4 (which shows the chlorophyll fluorescence Fv/Fm based on the recorded month and on constant levels of species) we observe that the photo-system II had maximum values during the month of September 2008 – significantly different from the values recorded during the months of July and August 2008. Higher Fv/Fm values were recorded for C. intybus and C. canadensis in July, for E. annuus and E. crus-galli in August and for L. serriola and P. aviculare during the months of July and August 2008.

![Figure 2. Chlorophyll fluorescence (Fv/Fm) variance by species on constant levels for the recorded months](image)

Analyzing figure 3 which reveals the chlorophyll fluorescence variation Fv/Fm by species, on constant levels at the locations in which the experiments were conducted, we realize the existence of two homogenous classes the best interacting C. intybus and P. aviculare which are homogenous amongst themselves while E. crus-galli had the smallest Fv/Fm value.

We also observe that on the locations in Pitesti and Mioveni the species effect on Fv/Fm was amplified while in Maracineni the influence was diminished (except for the C. intybus).

In Pitesti were recorded higher Fv/Fm values for E. annuus (0.756), at Mioveni for C. canadensis (0.762), and at Maracineni, for E. crus-galli (0.766) with lower values than the average tendency for C. canadensis (0.688).

![Figure 3. Chlorophyll fluorescence (Fv/Fm) variance by species on constant levels at the recorded locations](image)

![Figure 4. Chlorophyll fluorescence (Fv/Fm) variance by recorded month and on constant species levels](image)

For C. canadensis, L. serriola and P. aviculare, the month during which the Fv/Fm experiment was conducted is not significant Generally, for the period during which the tests were conducted (July, August, and September 2008) the Fv/Fm values were between 0.730 and 0.750. The fluorescence parameters are sensitive to the environmental stress factors.
According to the data from literature it was demonstrated that the fluorescence is influenced by the plant’s water supply [3], mineral nutrition [6], frost [1] and light intensity [4, 8].

The PS II efficiency must be correlated with the main environmental factors which influence the photosynthesis process. We presented the results obtained following the calculation of the correlation coefficients between the efficiency of the FS II in dark conditions (Fv/Fm) and the main meteorological factors for 2008. We concluded that the Fv/Fm ratio oscillation from 0.025 and 0.995 was determined (on the average of the six analyzed species) significantly negative by average temperature of the soil surface (with values between 11.6° – 32°C; r partial = -0.077*) and by the water deficit ET₀–PM – rainfall expressed in mm/previous decade of the measurements, with values between -45.7 and 49.2 mm; r partial = -0.060*). This means that the higher the soil temperature and the water deficit was, the smaller was the productive potential of the photochemical max of the PS II. For the six species from the experiment the meteorological factors were classified downward in importance of their influence over the Fv/Fm as follows: first was (based on the frequency of influence) the recorded evaporation with the instrument Bac class A (0.9 – 7.2 mm/day) – three species had negative correlations; second was the average temperature on the soil surface (11.6 – 32°C) – two species had negative correlations; third was the water deficit with negative influence and last was the minimal air humidity and the maximum amplitude of air temperature with inconsistent, positive and negative, influence.

In 2009, analyzing chlorophyll fluorescence indicators of leaves adapted to dark conditions the following were observed:

- by analyzing figure 5, which introduces the PS II efficiency variance by the environment in which the experiment was conducted, on constant species levels we observed the existence of four homogenous classes for the values Fv/Fm, the PS II efficiency recording the highest values in Maracineni, soil conditions, (0.797). Generally, the average tendency was kept for C. intybus and for L. serriola at which the asphalt’s positive effect was accentuated, regardless of the location, over the Fv/Fm. For E. annuus the differences between species, with respect to the anthropic’s environment influence of the PS II efficiency, (Fv/Fm), have vanished. In the case of C. canadensis, the Pitesti conditions have a favorable influence on the chlorophyll fluorescence (Fv/Fm) in contrast to the average effect. In the same environment, E. crus-galli is positively influenced photosystem II maximum efficiency while, the same species, the unfavorable influence of the Mioveni environment, soil conditions, is accentuated. P. aviculare is prospering when vegetating in asphalt cracks (Fv/Fm =0.766).

Figure 5. The PS II efficiency variance by the environment in which the experiment was conducted, on constant species levels

Figure 6 presents the maximum efficiency variance of PS II adapted for darkness by species, on constant levels in the environment where experiments were conducted and it shows that, on the experiment average, two homogenous classes had formed for the computed Fv/Fm values. The first class of values has five species while the second contains E. crus-galli with the lowest PS II efficiency (0.687). E. crus-galli is doing well in Pitesti, asphalt conditions, in contrast with the average findings where values were unfavorable for E. annuus and L. serriola (which, on average, had higher Fv/Fm values). Also in
Pitesti but in soil conditions, C. canadensis had the highest Fv/Fm value, significantly different than that of other species which had a uniform behavior. In Mioveni, asphalt conditions, the differences among species had accentuated, C. canadensis registering a decrease in its PS II efficiency over the average tendency. The soil conditions in Mioveni, had kept the average tendency and the lowest PS II efficiency was recorded for E. crus-galli. Also, the species effect over Fv/Fm had amplified so E. annuus și P. aviculare had been less efficient while E. crus-galli more efficient, with respect to the activity of the photosystem II (adapted to darkness – Fv/Fm), over the average tendency.

![Graph: Maximum efficiency variance of PS II adapted for darkness by species, on constant execution environment levels](image)

Figure 6. The maximum efficiency variance of PS II adapted for darkness by species, on constant execution environment levels.

4. CONCLUSIONS

Chlorophyll fluorescence represents a precise and inexpensive method which can provide immediate information regarding the PS II dilution of energy. The PS II efficiency in adapted dark conditions (Fv/Fm) had higher values in the case of Cichorium intybus and Polygonum aviculare during the experiment and in Maracineni soil condition than asphalt conditions. The maximum efficiency of the PS, Iași, XLVII, I (48): 645-652, 2005

II leafs adapted to dark conditions had maximum values during the month of September 2008 in the case of the six species of researched plants. The parameters of chlorophyll fluorescence were significantly negatively influenced by the mean temperature of the soil surface and by the water deficit.

5. REFERENCES

Journals:

Chapters:

Conference or Symposium Proceedings:
[8] Feneacu, M., Chițu, V., Aspecte privind utilizarea fluoareaței clorofolei în studierea influenței factorilor de mediu asupra fotosintezei la măr, Lucrări științifice USAMV